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Introduction 

Similar to many of his 9-year-old school peers, Brian was put on psychostimulants after 
complaints of poor concentration and impulsivity that met ADHD diagnostic criteria. Despite a 
remarkable improvement in his academic performance, parent and teachers noticed a reduction 
in appetite and weight loss after the onset of the medication. Moreover, when not under the 
effects of medication, inattention and impulsivity rebounded creating innumerous 
embarrassments to him and his family. His parents are now considering neurofeedback—a non-
pharmacological and non-invasive intervention that has shown promising results in managing the 
ADHD symptoms in the long run and without side effects [1]. 

Despite being the most often applied and accepted treatments for ADHD, recent large-scale 
studies and meta-analyses have demonstrated limitations of psychostimulants and behavioral 
therapy. Thus, research and the development of non-pharmacological treatments such as 
neurofeedback have been recommended. To date, however, the clinical value of neurofeedback 
is still debated, with evaluations ranging from “efficacious and specific” [2, 3] to “fails to 
support neurofeedback as an effective treatment for ADHD”. [4•] In this contribution, we will 
introduce neurofeedback and review the application of neurofeedback to ADHD as well as its 
past and current evidence in the treatment of ADHD. We will also attempt to reconcile these 
seemingly discrepant research findings. 

Current Treatment Approaches in ADHD 



Several guidelines exist for the diagnosis and treatment of children who have or are suspected of 
having ADHD. Among these are international, national, and various regional guidelines for 
general practitioners. Additionally, there are guidelines for youth aid and youth protective 
services. 

Traditionally, the treatment of ADHD consists of pharmacotherapy, often complemented by 
behavioral therapy based on parent management training and mediation training for parents and 
teachers [5]. Additionally, classroom interventions, academic interventions, and peer-related 
interventions are being used as psychosocial therapeutic approaches [6]. Regarding 
pharmacotherapy, the administration of methylphenidate is often the method of choice (e.g., 
Ritalin, Concerta, Equasym, Medikinet); however, D-amphetamine, as well as non-
psychostimulants, such as atomoxetine and guanfacine, are prescribed too [7]. Over the past 
years, the Multimodal Treatment Study of Children with ADHD and follow-up studies (the so-
called MTA studies) have provided ample research regarding stimulant medication, behavioral 
treatments, their combination, and self-chosen community care. Results demonstrate that both 
stimulant medication and a combined treatment had a clear clinical benefit in the short term, but 
on the long-term group differences attenuate, as assessed after 24 months, as well as after 6 and 
8 years [8]. These findings, in combination with studies indicating the potential side effects of 
pharmacotherapy [9•, 10], partial drug response [7], and the time and cost intensiveness of 
combining treatments due to the involvement of multiple professionals [6], have resulted in a 
growing interest into the development of alternative non-pharmacological treatments in ADHD. 

For instance, computerized cognitive–based training approaches (e.g., working-memory and 
attention training) aim to reduce ADHD core symptoms and tackle neuropsychological 
functioning. Research into this topic is still in the early stages and more controlled studies 
regarding the effects on ADHD core symptoms are required [11]. Another alternative treatment 
method for ADHD which is already more extensively studied in the past is neurofeedback. In the 
following paragraphs, we will (i) introduce neurofeedback, (ii) present standard protocols for 
ADHD, (iii) review the past and current evidence in the treatment of ADHD, and (iv) depict the 
current status of institutional and professional regulation of the clinical implementation of 
neurofeedback. 

Definition, History, and Mechanism of Action of Neurofeedback 

Despite the recent popularity of neuromodulation techniques, neurofeedback is for the most part 
still an unknown territory. Neurofeedback is based on a brain-computer interface (BCI) and is 
implemented by a software system and a processing pipeline, altogether consisting of five 
elements (Fig. 1) [12•]. Neurofeedback measures the participant’s own brain activity, which is 
pre-processed (steps 1 and 2). Pre-selected brain parameters (a specific frequency band or a brain 
potential) are calculated online (step 3) and translated to signals that are fed back to the user in 
real time (step 4). Thus, selected features of brain activity are made perceivable for the 
participant. Through this feedback, the participant (step 5) can learn to self-regulate his own 
brain activity to directly alter the underlying neural mechanism of cognition and behavior. 

 



 
Fig. 1 

Overview neurofeedback: neurofeedback pipeline and three areas of neurofeedback application. The 
pipeline includes the five most important processing steps and parts of a neurofeedback system 

It has been proposed that neurofeedback is based on principles of operant conditioning and 
procedural skills learning. Due to these learning mechanisms, neuroplasticity is expected to take 
place during neurofeedback training either via Hebbian plasticity or anti-Hebbian/homeostatic 
plasticity. Such intrinsic regulatory mechanisms are believed to prevent extreme states of brain 
activity, such as pathologically high or low synaptic strengths or oscillatory states; for further 
reading, see [13•]. 

Nowadays, neurofeedback is used in three ways: (i) as a therapeutic tool to normalize deviating 
brain activity and treat neurocognitive disorders, (ii) as a so-called peak performance training to 
enhance cognitive performance in healthy participants, and (iii) as an experimental method to 
investigate the causal role of neural oscillations in cognition and behavior. More precisely, the 
neurofeedback research is dominated by two streams: clinical research and neuroscientific 
inspired research, which is mainly based on recent methodological and technical innovations, as 
well as on an increasing knowledge about the neural correlates of behavior and cognition. Some 
examples of recently developed EEG neurofeedback protocols are the upregulation or 
downregulation of high alpha [14, 15], the upregulation of frontal beta [16], and frontal midline 
theta [17], but also neurofeedback protocols using fMRI neurofeedback [18•]. 

Historically, neurofeedback dates back to the initial discovery of the human 
electroencephalogram (EEG) by Hans Berger. Only 6 years after this breakthrough, two French 



researchers—Gustave Durup and Alfred Fessard—first reported that the EEG alpha rhythm 
could be subject to classical conditioning [19], which is thought to be one of the basic premises 
of neurofeedback. This initial observation was followed up by more systematic studies in the 
early 1940s that further demonstrated all of the Pavlovian types of conditioned responses could 
be demonstrated on the “EEG alpha blocking response”. [20] In a follow-up study, Jasper and 
Shagass [21] investigated further whether participants could also exert voluntary control over 
this alpha blocking response. In this study, they had participants press a button, which would 
switch the lights on and off, and use subvocal verbal commands when pressing the button, (e.g., 
“Block” when pressing the button and “Stop” when releasing the button). After five sessions, the 
subject was able to voluntarily suppress alpha activity, while the lights were off (a condition 
where normally synchronous alpha would be present). Despite these early developments, it was 
only in the 1970s that these same principles were applied more systematically, and the first 
clinical implications were described in the literature. These developments were motivated by the 
discovery of the anticonvulsant effects of sensori-motor rhythm (SMR) neurofeedback in cats 
[22] and subsequently humans [23]. The presumed role of SMR modulation on motor behavior 
was followed by the first demonstrations of the positive effects of SMR neurofeedback in 
hyperkinetic disorder [24]. Around the same 1960–1970 period, the first report of voluntary 
control over a slow brain potential called the contingent negative variation (CNV) or 
“bereitschaftspotential” (readiness potential, due to the property of this potential to emerge when 
preparing for action, e.g., when waiting in front of a traffic light) was reported [25], which laid 
the foundation of another well-known neurofeedback approach, namely of slow cortical potential 
(SCP) neurofeedback. The first application of SCP neurofeedback in ADHD was reported in 
2004 [26]. The initial findings described above as SMR and TBR neurofeedback resulted into 
what we currently known as “frequency band neurofeedback.” 
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Standard Protocols with ADHD 

Theta/beta (4–7 Hz/12–21 Hz) ratio (TBR) neurofeedback strives to decrease theta and/or 
increase beta power in central and frontal locations. This protocol directly targets important 
electrophysiological characteristics such as high theta/beta ratios, high theta power, and/or low 
beta power commonly observed in children (for a review, see [27]) and adults with ADHD [28–
30]. Recent randomized controlled trials suggest that 30 to 40 sessions of TBR neurofeedback 
were as effective as methylphenidate in reducing inattentive and hyperactivity symptoms and 
were even associated with superior post-treatment academic performance [31, 32]. It has been 
proposed that the effects of TBR neurofeedback on ADHD might be explained by the learned 
self-regulation of attention [33] as evidenced by enhanced amplitude of endogenous evoked-
related potentials such as the P300 [34]. However, more neuroscientific evidence is needed to 
determine the specific mechanisms by which TBR neurofeedback might impact cognitive 
functioning in ADHD. 

SMR neurofeedback training over the sensori-motor strip (predominantly in the central right 
hemispheric region) was first applied to ADHD children by Lubar and colleagues [24, 35], based 
on the functional association of the sensori-motor rhythm with behavioral inhibition and the 
promising results in reducing cortical excitability in epileptics obtained by Sterman, MacDonald, 
and Stone [36]. Lubar’s seminal studies revealed that the beneficial hyperactivity-reducing 



effects of a combined SMR/theta neurofeedback training were maintained after psychostimulants 
was withdrawn in hyperactive children. 

Studies suggest that SMR neurofeedback training reduces inattentive and hyperactive/impulsive 
symptoms in ADHD children to the same extent as TBR training and comparable number of 
treatment sessions. However, the two protocols might achieve the same results through distinct 
mechanisms. Arns, Feddema, and Kenemans [37] provided evidence that ADHD patients trained 
with the SMR protocol showed decreased sleep onset latency (SOL) and improved sleep quality 
in comparison to those administered with TBR, midway treatment. A mediation analysis 
revealed that this normalized sleep mid-treatment was responsible for the improved inattention 
post-treatment. The improvements in ADHD symptoms following SMR training might hence be 
the result of the vigilance stabilization mediated by the regulation of the locus coeruleus 
noradrenergic system of which activation has been shown to impact the sleep spindle circuitry 
[38]. This explanation seems to be in line with previous indications that patients with ADHD 
present delays in SOL [39] and that SMR training increases sleep spindle density and improves 
sleep quality in healthy adults [40]. 

Another standard protocol is the self-regulation of SCP [41, 42••] after around 35 sessions. SCP 
neurofeedback is based on the learned self-regulation of cortical activation and inhibition which 
are associated with the electrical negativation and positivation of slow cortical electrical 
deflections respectively. These periodical shifts from electrical positivity to negativity have been 
described as a phasic tuning mechanism in the regulation of attention [43] as shown by the 
enhanced reaction time, stimulus detection, and short-term memory during the negative shift 
phase [44]. Since SCP, of which the CNV is an example, are closely associated with preparatory 
motor responses with a maximal topographic representation in the motor areas, the vertex is 
usually the site of choice for training. Differently from TBR and SMR protocols which are 
typically unidirectional (i.e., instructions either require the participant to increase or decrease the 
power of the EEG parameter), the self-regulation of SCP usually involves the training in 
generating both cortical activation and inhibition. In the case of ADHD, the therapeutic focus is 
on promoting an increase in the firing probabilities of the underlying cortical areas (i.e., 
negativation). Another difference relative to frequency neurofeedback is that in SCP 
neurofeedback the learning trials are higher in number and considerably shorter in duration. 
Interestingly, it has been hypothesized that SCP might also be associated with improvements in 
sleep. The generation of slow oscillations, in particular negative slow direct current, shifts 
training during SCP neurofeedback, might exert control over the sleep spindle circuit and 
therefore facilitate the transition from wakefulness to sleep [45]. 
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Current Status of Efficacy of Standard Protocols for Neurofeedback in ADHD 

As with any emerging new treatments, knowledge of technical aspects of the treatment, proper 
standards, and education are crucial for appropriately evaluating the merits and pitfalls of 
neurofeedback. Unfortunately, the unfounded assumption that “neurofeedback = neurofeedback” 
is often made. Neurofeedback can differentially impact brain functioning depending on the kind 
protocol and implementation the same way as different pharmacological treatments do (e.g., 
antidepressants and analgesic drugs). As an illustration, neurofeedback treatments such as the 
earlier mentioned SMR, TBR, and SCP neurofeedback are well-investigated and effective in the 



treatment of ADHD while other approaches such as posterior alpha enhancement have been 
found to be not effective (for a review, see [3]. 

Especially when restricted to standard protocols such as TBR, SMR, and SCP protocols [3], 
neurofeedback is a well-investigated treatment for ADHD. This has become evident from several 
meta-analyses [2, 46••, 47], including a critical meta-analysis from the European ADHD 
Guidelines Group (EAGG) that also conducted a sensitivity analysis focused on so called 
“blinded” ratings (i.e., teacher reports only) [4•]. Blinded ratings have usually lower effects sizes 
than ratings by people most-proximal to the child and therefore least blinded (e.g., parents) and 
both rating types are only modestly correlated [48]. One explanation for this may be that the 
rating types focus on different aspects of ADHD symptoms. This is reflected in studies showing 
different rating-ADHD aspect associations, as for instance parent ratings of hyperactive-
impulsive behaviors were found to be correlated with genetics [49], whereas teacher ratings have 
been shown to be associated to medication effects [50], most likely due to the fast onset of action 
of psychostimulants. To come back to the latter meta-analysis [4•], the researchers did not find 
an effect of neurofeedback in general on teacher-rated ADHD symptoms, but there was an effect 
when the analysis was restricted to the above mentioned “standard protocols.” Finally, a recent 
meta-analysis that included 10 RCTs and specifically looked at long-term effects of 
neurofeedback, compared to active treatments (including psychostimulants) and semi-active 
treatments (e.g., cognitive training), found that after on average 6 months follow-up, the effects 
of neurofeedback were superior to semi-active control groups and no different from active 
treatments including methylphenidate [46••]. Interestingly, this meta-analysis confirmed the 
trend for medication effects to diminish with time, and the effects of neurofeedback—without 
additional sessions being conducted—to increase with time. These data suggest the promising 
aspect, namely of long-term efficacy, of neurofeedback. Currently, one of the largest and most 
comprehensive double-blind multisite RCT is carried out: the International Collaborative ADHD 
Neurofeedback study (ICAN). This study consists of a cross-site investigation team with 
different background of ADHD treatment approaches assessing 140 participants in total (see the 
study design in [51]), and results are foreseen to be published in 2019. 
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Current Status of Institutional and Professional Regulation of Clinical 
Neurofeedback Implementations 

Although standard protocols turn out to be efficacious and specific, the practical implementation 
of neurofeedback as a clinical therapy is currently not regulated. This applies to the educational 
standards, medical security, and the usage of standard protocols indicated for specific disorders 
such as ADHD. The lack of regulation and agreed upon standards comes with the danger of 
patients being treated with ineffective neurofeedback protocols applied by unlicensed personal 
(or even worse by people without any health-related background). For instance, although 
practitioners should stick to standard protocols with functional specificity of the frequency and 
topographic locations, clinical practice often deviates from what is recommended by research. 
The lack of regulation and missing standards have furthermore caused a surge in commercial 
driven applications and proclaimed “innovations” of neurofeedback protocols and 
implementations. Several studies have now demonstrated that some of those “innovations” and 
implementations do not work. One example of such ineffective technique is the SmartBrain 



neurofeedback approach using the “NASA patented engagement index” with Sony PlayStation 
feedback [51, 52]. Additionally, there is no evidence in favor of the efficacy of unconventional 
neurofeedback protocols used in some neurofeedback clinics [53] and frequently advertised 
applications such as Z score and LORETA neurofeedback [54]. Unfortunately, these proclaimed 
innovations and commercial-driven applications only add noise to the ongoing debate of 
neurofeedback efficacy and risk “throwing the baby out with the bathwater.” However, above all 
this demonstrates the need for further research into the effectiveness of already available and 
newly developed neurofeedback protocols (i.e., the number of sessions, targeted brain area, 
selected brain parameter, working mechanism) in addition to proper “agreed-upon standards” 
and training within the field of neurofeedback. 

Neurofeedback researchers and practitioners can affiliate to scientific and professional 
organizations at the international and national level. On an international level, there are mainly 
two societies. The Society of Applied Neuroscience (SAN) (http://www.applied-
neuroscience.org/) is an EU-based nonprofit membership organization for the advancement of 
neuroscientific knowledge and development of innovative applications for optimizing brain 
functioning (such as neurofeedback with EEG, fMRI, NIRS). The International Society for 
Neurofeedback & Research (ISNR (https://www.isnr.org) is a membership organization aimed at 
supporting scientific research in applied neurosciences, promoting education in the field of 
neurofeedback, albeit not always clearly separating commercial and objective interests. Other 
neurofeedback societies or organizations are often connected to certain neurofeedback equipment 
manufacturers and have (seemingly) conflicting interests. Furthermore, the Biofeedback 
Certification International Alliance (BCIA) is a broader international licensure also including 
biofeedback (www.BCIA.org). 
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Conclusions 

Recent years witness a renewed interest in neurofeedback in response to the lack of long-term 
effects for both medication and behavioral therapy and the side effects of medication. Herein, we 
provide evidence for the efficacy and specificity of standard neurofeedback protocols, namely 
theta/beta, sensori-motor rhythm, and slow cortical potential. In line with the guidelines for 
rating evidence developed by the APA, “standard” neurofeedback protocols have been 
considered to be “Efficacious and Specific, Level V” in the treatment of ADHD (AAPB 
Guidelines: [57]). 

However, currently there are no uniform standards regarding training courses for neurofeedback 
that are accepted by expert associations, neither national-wide, nor in the EU or USA. While 
performing neurofeedback in a therapeutic context, a thorough basic training, a distinct technical 
understanding of the medical devices, the software, and the EEG caps, as well as continuing 
education, are imperative. Regarding the medical security performing neurofeedback in a clinical 
context, neurofeedback devices (hardware: amplifier and EEG caps, neurofeedback software) are 
neither regulated in a strict way. However, it is essential that besides the absolute minimum 
technical requirements after the Medical Device Regulation (MDR) EU 2017/745), 
neurofeedback devices should be regulated by both the CE (that confirms a medical device meets 
the essential MDR requirements) and a European equivalent of the Food and Drug 
Administration (FDA). The FDA enforces laws to protect the consumer’s health, safety, and 



pocketbook. Such potential regulating mechanisms could be implemented by the European 
medicine regulatory network. In short, tasks ahead concern regulating neurofeedback as therapy, 
developing internationally accepted binding standards for education and NF implementation and 
the qualification of neurofeedback trainers. 

Last but not least, Brian—now 4 years later—discontinued his medication successfully under 
medical supervision. Due to neurofeedback, his impulsivity symptoms strongly reduced and he 
gained control over his concentration, doing well in high school performance. 
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BACKGROUND: Intellectual Disability is a disorder that causes problems in cognition, 
behavior, communication, sociability, and health. Given that NF has been found to be 
effective in Attention Deficit/Hyperactivity Disorder (ADHD) and Learning Disabilities 
(LD) and based on the results of two previous case studies we have conducted in 
children with Trisomy 21 (Down’s Syndrome) and in children with Intellectual 
Disability, where we have seen the positive effects of Neurofeedback (NF) treatment, we 
hypothesized that NF treatment would be effective in a larger group of children with 
Intellectual Disability. METHODS: We analyzed the IQ of a case series of 67 
intellectually disabled children (39 Male, 28 Female) in the age ranges of 6 – 16 years of 
age (Mean 12.2, 95%CI: 10.4-13.9) before and after QEEG Guided Neurofeedback 
treatment. The goal of the Neurofeedback treatment was to normalize frequencies in 
areas that were found to be outside the norms based on QEEG recording and 
comparison to a normative database. The hypothesis was that by normalizing the brain’s 
electrical activity we would be able to see a corresponding improvement in intellectual 
functioning as measured by the IQ scores. RESULTS: A statistically significant increase 
in IQ scores were observed after Neurofeedback treatment. Overall the average 
increases were above any expected gains to a retest factor; that is, more than 6 points 
increase in VIQ, more than 9 points in PIQ, and 7 points in FSIQ CONCLUSION: Based 
on these findings further controlled studies using this methodology in this group of 
patients is warranted. 
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